Artificial cell-derived vesicles by extrusion, a novel docetaxel drug delivery system for lung cancer
No Thumbnail Available
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
<p>Lung cancer (LC) has the highest mortality rate worldwide and novel therapies are being sought. Among those are cell-product-based therapies such as extracellular vesicles (EVs). Recently, it has been discovered that artificial cell-derived vesicle by extrusion (EXT) could be a potential tool to lower barriers to clinical translation. In this study we propose a formulation of human natural killer (NK) EXT encapsulating docetaxel (DTX) for LC therapy. EXT-DTXs were generated from NK cells by cell extrusion. EXTs and DTX-EXTs, were characterized and compared to EVs secreted by NK cells. All vesicles displayed a cup-shaped morphology with a mean size of <200 nm and stable composition, with zeta potentials between −26 and −33 mV. DTX-EXT contained 14 ± 9.1 p.m. DTX per μg of EXT protein. The proteome of EVs, EXT and DTX-EXT was analyzed and revealed a distinct protein enrichment pattern for each group. Uptake inhibition studies identified clathrin-mediated endocytosis as the primary internalization pathway for all vesicle types in A549 and H1975 LC cells. Cytotoxicity assays demonstrated that DTX-EXTs induced significantly higher apoptosis and reduced cell viability compared to EVs and EXTs, with higher efficacy in A549 cells. Notably, DTX-EXTs induced cytotoxic effects at picomolar docetaxel concentrations, 300–600 times lower than free DTX. This study provides the first comprehensive characterization of docetaxel-loaded NK artificially cell-derived vesicle by extrusion, highlighting their potential as a novel therapeutic delivery system with enhanced anti-tumor efficacy. Future studies are warranted to further explore the therapeutic potential and safety profile of DTX-EXTs in cancer treatment.</p>
Keywords
Artificially cell-derived vesicles (ACDV), Cell extrusion, Clathrin-dependent endocytosis, Drug encapsulation, SDG 3 - Good Health and Well-being