Gapped vegetation patterns: Crown/root allometry and snaking bifurcation
No Thumbnail Available
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
<p>Nonuniform spatial distributions of vegetation in scarce environments consist of either gaps, bands often called tiger bush or patches that can be either self-organized or spatially localized in space. When the level of aridity is increased, the uniform vegetation cover develops localized regions of lower biomass. These spatial structures are generically called vegetation gaps. They are embedded in a uniform vegetation cover. The spatial distribution of vegetation gaps can be either periodic or randomly distributed. We investigate the combined influence of the facilitative and the competitive nonlocal interactions between plants, and the role of crow/root allometry, on the formation of gapped vegetation patterns. We characterize first the formation of the periodic distribution of gaps by drawing their bifurcation diagram. We then characterize localized and aperiodic distributions of vegetation gaps in terms of their snaking bifurcation diagram.</p>
Nonuniform spatial distributions of vegetation in scarce environments consist of either gaps, bands often called tiger bush or patches that can be either self-organized or spatially localized in space. When the level of aridity is increased, the uniform vegetation cover develops localized regions of lower biomass. These spatial structures are generically called vegetation gaps. They are embedded in a uniform vegetation cover. The spatial distribution of vegetation gaps can be either periodic or randomly distributed. We investigate the combined influence of the facilitative and the competitive nonlocal interactions between plants, and the role of crow/root allometry, on the formation of gapped vegetation patterns. We characterize first the formation of the periodic distribution of gaps by drawing their bifurcation diagram. We then characterize localized and aperiodic distributions of vegetation gaps in terms of their snaking bifurcation diagram.
Nonuniform spatial distributions of vegetation in scarce environments consist of either gaps, bands often called tiger bush or patches that can be either self-organized or spatially localized in space. When the level of aridity is increased, the uniform vegetation cover develops localized regions of lower biomass. These spatial structures are generically called vegetation gaps. They are embedded in a uniform vegetation cover. The spatial distribution of vegetation gaps can be either periodic or randomly distributed. We investigate the combined influence of the facilitative and the competitive nonlocal interactions between plants, and the role of crow/root allometry, on the formation of gapped vegetation patterns. We characterize first the formation of the periodic distribution of gaps by drawing their bifurcation diagram. We then characterize localized and aperiodic distributions of vegetation gaps in terms of their snaking bifurcation diagram.
Keywords
Competitive interactions, Degradation of arid ecosystems, Nonlocal facilitation, Snaking bifurcation, Symmetry-breaking instabilities, Vegetation gaps, Vegetation patterns, Vegetation patterns, Vegetation gaps, Nonlocal facilitation, Competitive interactions, Symmetry-breaking instabilities, Snaking bifurcation, Degradation of arid ecosystems