2025-11-182025-11-18https://repositorio.uandes.cl/handle/uandes/54523<p>The increase of data rate and bandwidth efficiency of free-space optical communication links may be supported by the use of dense orbital angular momentum (OAM) states, carrying several information bits per transmission. Using machine-learning decoding, the performance of 32-OAM and 64-OAM signal constellations –designed using 4-state superpositions– are studied using numerical propagation models. Using two candidate architectures for detection –Shack-Hartmann and Mode Sorter– we evaluate the performance of the modulation in a simulated optical atmospheric channel by means of the detection accuracy.</p>The increase of data rate and bandwidth efficiency of free-space optical communication links may be supported by the use of dense orbital angular momentum (OAM) states, carrying several information bits per transmission. Using machine-learning decoding, the performance of 32-OAM and 64-OAM signal constellations –designed using 4-state superpositions– are studied using numerical propagation models. Using two candidate architectures for detection –Shack-Hartmann and Mode Sorter– we evaluate the performance of the modulation in a simulated optical atmospheric channel by means of the detection accuracy. © 2021 SPIE.info:eu-repo/semantics/restrictedAccessFSO communicationsMode sorterOrbital angular momentumShack-Hartmann sensorSignal modulationPerformance of turbulence-impaired dense OAM constellations for data modulationConference article