Chaotic diffusion of dissipative solitons: From anti-persistent random walks to Hidden Markov Models

dc.coverageDOI: 10.1016/j.chaos.2022.112290
dc.creatorAlbers, Tony
dc.creatorCisternas, Jaime
dc.creatorRadons, Günter
dc.date2022
dc.date.accessioned2025-11-18T19:42:01Z
dc.date.available2025-11-18T19:42:01Z
dc.description<p>In previous publications, we showed that the incremental process of the chaotic diffusion of dissipative solitons in a prototypical complex Ginzburg-Landau equation, known, e.g., from nonlinear optics, is governed by a simple Markov process leading to an Anti-Persistent Random Walk of motion or by a more complex Hidden Markov Model with continuous output densities. In this article, we reveal the transition between these two models by examining the dependence of the soliton dynamics on the main bifurcation parameter of the cubic-quintic Ginzburg-Landau equation, and by identifying the underlying hidden Markov processes. These models capture the non-trivial decay of correlations in jump widths and sequences of symbols representing the symbolic dynamics of short and long jumps, the statistics of anti-persistent walk episodes, and the multimodal density of the jump widths. We demonstrate that there exists a physically meaningful reduction of the dynamics of an infinite-dimensional deterministic system to one of a probabilistic finite state machine and provide a deeper understanding of the soliton dynamics under parameter variation of the underlying nonlinear dynamics.</p>eng
dc.identifierhttps://investigadores.uandes.cl/en/publications/87771ca2-eaaf-4d8c-a8c1-069e9d6baa79
dc.identifier.urihttps://repositorio.uandes.cl/handle/uandes/52112
dc.languageeng
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourcevol.161 (2022)
dc.subjectAnti-persistent random walks
dc.subjectChaotic diffusion
dc.subjectHidden Markov models
dc.subjectSolitons
dc.titleChaotic diffusion of dissipative solitons: From anti-persistent random walks to Hidden Markov Modelseng
dc.typeArticleeng
dc.typeArtículospa
Files
Collections