Analytics-driven complaint prioritisation via deep learning and multicriteria decision-making

dc.coverageDOI: 10.1016/j.ejor.2023.08.027
dc.creatorVairetti, Carla
dc.creatorAránguiz, Ignacio
dc.creatorMaldonado, Sebastián
dc.creatorKarmy, Juan Pablo
dc.creatorLeal, Alonso
dc.date2024
dc.date.accessioned2026-01-05T21:14:06Z
dc.date.available2026-01-05T21:14:06Z
dc.description<p>Complaint analysis is an essential business analytics application because complaints have a strong influence on customer satisfaction (CSAT). However, the process of categorising and prioritising complaints manually can be extremely time consuming for large companies. In this paper, we propose a framework for automatic complaint labelling and prioritisation using text analytics and operational research techniques. The labelling step of the training set is performed using a simple weighting approach from the multiple-criteria decision-making (MCDM) literature, while transformer-based deep learning (DL) techniques are used for text classification. We define two priority classes, namely, urgent complaints and other claims, and develop a system for automatic complaint categorisation. Our experimental results show that excellent predictive performance can be achieved with state-of-the-art text classification models. In particular, BETO, a bidirectional encoder representations from transformers (BERT) model trained on a large Spanish corpus, reaches an accuracy (ACCU) and area under the curve (AUC) of 92.1% and 0.9785, respectively. This positive result translates into a successful complaint prioritisation scheme, which improves CSAT and reduces the churn rate.</p>eng
dc.identifierhttps://investigadores.uandes.cl/en/publications/315c204f-29a3-456a-9078-bfbf0a71dc5d
dc.identifier.urihttps://repositorio.uandes.cl/handle/uandes/65952
dc.languageeng
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourcevol.312 (2024) date: 2024-02-01 nr.3 p.1108-1118
dc.subjectAnalytics
dc.subjectBERT
dc.subjectComplaint management
dc.subjectDeep learning
dc.subjectText analytics
dc.titleAnalytics-driven complaint prioritisation via deep learning and multicriteria decision-makingeng
dc.typeArticleeng
dc.typeArtículospa
Files
Collections