Interaction of dissipative solitons stabilized by nonlinear gradient terms

dc.coverageDOI: 10.1103/PhysRevE.103.042215
dc.creatorDescalzi, Orazio
dc.creatorCartes, Carlos
dc.creatorBrand, Helmut R.
dc.date2021
dc.date.accessioned2025-11-18T19:41:05Z
dc.date.available2025-11-18T19:41:05Z
dc.description<p>We study the interaction of stable dissipative solitons of the cubic complex Ginzburg-Landau equation which are stabilized only by nonlinear gradient terms. In this paper we focus for the interactions in particular on the influence of the nonlinear gradient term associated with the Raman effect. Depending on its magnitude, we find up to seven possible outcomes of theses collisions: Stationary bound states, oscillatory bound states, meandering oscillatory bound states, bound states with large-amplitude oscillations, partial annihilation, complete annihilation, and interpenetration. Detailed results and their analysis are presented for one value of the corresponding nonlinear gradient term, while the results for two other values are just mentioned briefly. We compare our results with those obtained for coupled cubic-quintic complex Ginzburg-Landau equations and with the cubic-quintic complex Swift-Hohenberg equation. It turns out that both meandering oscillatory bound states as well as bound states with large-amplitude oscillations appear to be specific for coupled cubic complex Ginzburg-Landau equations with a stabilizing cubic nonlinear gradient term. Remarkably, we find for the large-amplitude oscillations a linear relationship between oscillation amplitude and period.</p>eng
dc.descriptionWe study the interaction of stable dissipative solitons of the cubic complex Ginzburg-Landau equation which are stabilized only by nonlinear gradient terms. In this paper we focus for the interactions in particular on the influence of the nonlinear gradient term associated with the Raman effect. Depending on its magnitude, we find up to seven possible outcomes of theses collisions: Stationary bound states, oscillatory bound states, meandering oscillatory bound states, bound states with large-amplitude oscillations, partial annihilation, complete annihilation, and interpenetration. Detailed results and their analysis are presented for one value of the corresponding nonlinear gradient term, while the results for two other values are just mentioned briefly. We compare our results with those obtained for coupled cubic-quintic complex Ginzburg-Landau equations and with the cubic-quintic complex Swift-Hohenberg equation. It turns out that both meandering oscillatory bound states as well as bound states with large-amplitude oscillations appear to be specific for coupled cubic complex Ginzburg-Landau equations with a stabilizing cubic nonlinear gradient term. Remarkably, we find for the large-amplitude oscillations a linear relationship between oscillation amplitude and period.spa
dc.identifierhttps://investigadores.uandes.cl/en/publications/76f7c772-22dc-4003-9e12-09631345f9ef
dc.identifier.urihttps://repositorio.uandes.cl/handle/uandes/51623
dc.languageeng
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.sourcevol.103 (2021) date: 2021-04-01 nr.4
dc.subjectGinzburg-Landau equation
dc.subjectOscillations
dc.titleInteraction of dissipative solitons stabilized by nonlinear gradient termseng
dc.typeArticleeng
dc.typeArtículospa
Files
Collections