Rapid fabrication of reinforced and cell-laden vascular grafts structurally inspired by human coronary arteries

dc.coverageDOI: 10.1038/s41467-019-11090-3
dc.creatorAkentjew, Tamara L.
dc.creatorTerraza, Claudia
dc.creatorSuazo, Cristian
dc.creatorMaksimuck, Jekaterina
dc.creatorWilkens, Camila A.
dc.creatorVargas, Francisco
dc.creatorZavala, Gabriela
dc.creatorOcaña, Macarena
dc.creatorEnrione, Javier
dc.creatorGarcía-Herrera, Claudio M.
dc.creatorValenzuela, Loreto M.
dc.creatorBlaker, Jonny J.
dc.creatorKhoury, Maroun
dc.creatorAcevedo, Juan Pablo
dc.date2019
dc.date.accessioned2025-11-18T19:53:38Z
dc.date.available2025-11-18T19:53:38Z
dc.description<p>Design strategies for small diameter vascular grafts are converging toward native-inspired tissue engineered grafts. A new automated technology is presented that combines a dip-spinning methodology for depositioning concentric cell-laden hydrogel layers, with an adapted solution blow spinning (SBS) device for intercalated placement of aligned reinforcement nanofibres. This additive manufacture approach allows the assembly of bio-inspired structural configurations of concentric cell patterns with fibres at specific angles and wavy arrangements. The middle and outer layers were tuned to structurally mimic the media and adventitia layers of native arteries, enabling the fabrication of small bore grafts that exhibit the J-shape mechanical response and compliance of human coronary arteries. This scalable automated system can fabricate cellularized multilayer grafts within 30 min. Grafts were evaluated by hemocompatibility studies and a preliminary in vivo carotid rabbit model. The dip-spinning-SBS technology generates constructs with native mechanical properties and cell-derived biological activities, critical for clinical bypass applications.</p>eng
dc.identifierhttps://investigadores.uandes.cl/en/publications/ea9727ec-c18d-4369-a637-a410e47dd555
dc.identifier.urihttps://repositorio.uandes.cl/handle/uandes/58353
dc.languageeng
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourcevol.10 (2019) date: 2019-12-01 nr.1
dc.subjectBioprosthesis
dc.subjectBlood Vessel Prosthesis
dc.subjectBlood Vessel Prosthesis Implantation
dc.subjectCoronary Artery Bypass
dc.subjectCoronary Vessels
dc.subjectHuman Umbilical Vein Endothelial Cells
dc.subjectHumans
dc.subjectHydrogels
dc.subjectMaterials Testing
dc.subjectTensile Strength
dc.subjectTissue Engineering
dc.titleRapid fabrication of reinforced and cell-laden vascular grafts structurally inspired by human coronary arterieseng
dc.typeArticleeng
dc.typeArtículospa
Files
Collections