Automated text-level semantic markers of Alzheimer's disease
No Thumbnail Available
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
<p>Introduction: Automated speech analysis has emerged as a scalable, cost-effective tool to identify persons with Alzheimer's disease dementia (ADD). Yet, most research is undermined by low interpretability and specificity. Methods: Combining statistical and machine learning analyses of natural speech data, we aimed to discriminate ADD patients from healthy controls (HCs) based on automated measures of domains typically affected in ADD: semantic granularity (coarseness of concepts) and ongoing semantic variability (conceptual closeness of successive words). To test for specificity, we replicated the analyses on Parkinson's disease (PD) patients. Results: Relative to controls, ADD (but not PD) patients exhibited significant differences in both measures. Also, these features robustly discriminated between ADD patients and HC, while yielding near-chance classification between PD patients and HCs. Discussion: Automated discourse-level semantic analyses can reveal objective, interpretable, and specific markers of ADD, bridging well-established neuropsychological targets with digital assessment tools.</p>
Keywords
Alzheimer's disease dementia, automated speech analysis, Parkinson's disease, semantic granularity, semantic variability, SDG 3 - Good Health and Well-being