Nonlinear Maxwell equations and strong-field electrodynamics

dc.coverageDOI: 10.1088/1402-4896/ac50c2
dc.creatorBruce, S. A.
dc.date2022
dc.date.accessioned2025-11-18T19:53:11Z
dc.date.available2025-11-18T19:53:11Z
dc.description<p>We investigate two Lagrangian models of nonlinear electrodynamics (NLED). These models lead to two different sets of nonlinear (NL) Maxwell equations. The first case deals with the well-known Heisenberg-Euler (HE) model of electromagnetic (EM) self-interactions in a vacuum where only the lowest orders in EM Lorentz invariants are considered. The second instance proposes an extension of the HE model. It consists of a NL Maxwell-Dirac spinor model where the EM field modifies the dynamics of the energy-momentum operator sector of the Dirac Lagrangian instead of its rest-mass term counterpart. This work complements our recent research on NL Dirac equations in the strong EM field regime.</p>eng
dc.identifierhttps://investigadores.uandes.cl/en/publications/1519347d-8cbd-48ab-8a23-d6d7e3950da2
dc.identifier.urihttps://repositorio.uandes.cl/handle/uandes/58109
dc.languageeng
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourcevol.97 (2022) nr.3
dc.subjectNonlinear electrodynamics
dc.subjectNonlinear Maxwell equations
dc.subjectStrong-electromagnetic fields
dc.titleNonlinear Maxwell equations and strong-field electrodynamicseng
dc.typeArticleeng
dc.typeArtículospa
Files
Collections