Dissipative solitons stabilized by nonlinear gradients in one spatial dimension: From deterministic to stochastic aspects, and a perspective
No Thumbnail Available
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
<p>The purpose of this article is twofold. Firstly, to investigate the formation of localized spatiotemporal chaos in the complex cubic Ginzburg–Landau equation including nonlinear gradient terms. We found a transition to spatiotemporal disorder via quasiperiodicity accompanied by the fact that incommensurate satellite peaks arise around the fundamental frequency and its harmonics. Secondly, we review the influence of multiplicative noise on stationary pulses stabilized by nonlinear gradients. Numerical simulations show surprising results that are explained analytically. We found that multiplicative noise can induce a velocity change of propagating dissipative solitons. This completes previous communications on the two issues addressed in O. Descalzi et al., (2019, 2021, 2022).</p>
The purpose of this article is twofold. Firstly, to investigate the formation of localized spatiotemporal chaos in the complex cubic Ginzburg–Landau equation including nonlinear gradient terms. We found a transition to spatiotemporal disorder via quasiperiodicity accompanied by the fact that incommensurate satellite peaks arise around the fundamental frequency and its harmonics. Secondly, we review the influence of multiplicative noise on stationary pulses stabilized by nonlinear gradients. Numerical simulations show surprising results that are explained analytically. We found that multiplicative noise can induce a velocity change of propagating dissipative solitons. This completes previous communications on the two issues addressed in O. Descalzi et al., (2019, 2021, 2022)
The purpose of this article is twofold. Firstly, to investigate the formation of localized spatiotemporal chaos in the complex cubic Ginzburg–Landau equation including nonlinear gradient terms. We found a transition to spatiotemporal disorder via quasiperiodicity accompanied by the fact that incommensurate satellite peaks arise around the fundamental frequency and its harmonics. Secondly, we review the influence of multiplicative noise on stationary pulses stabilized by nonlinear gradients. Numerical simulations show surprising results that are explained analytically. We found that multiplicative noise can induce a velocity change of propagating dissipative solitons. This completes previous communications on the two issues addressed in O. Descalzi et al., (2019, 2021, 2022)
Keywords
Dissipative solitons, Ginzburg–Landau equation, Ginzburg–Landau equation, Dissipative solitons